News

Ursula Keller wins “Swiss Nobel” Marcel Benoist Prize- for pioneering work in ultrafast lasers
MUST2022 Conference- a great success!
New scientific highlights- by MUST PIs Wörner, Chergui, and Richardson
FELs of Europe prize for Jeremy Rouxel- “Development or innovative use of advanced instrumentation in the field of FELs”
Ruth Signorell wins Doron prizefor pioneering contributions to the field of fundamental aerosol science
New FAST-Fellow Uwe Thumm at ETH- lectures on Topics in Femto- and Attosecond Science
International Day of Women and Girls in Science- SSPh asked female scientists about their experiences
New scientific highlight- by MUST PIs Milne, Standfuss and Schertler
EU XFEL Young Scientist Award for Camila Bacellar,beamline scientist and group leader of the Alvra endstation at SwissFEL
Prizes for Giulia Mancini and Rebeca Gomez CastilloICO/IUPAP Young Scientist Prize in Optics & Ernst Haber 2021
Nobel Prize in Chemistry awarded to RESOLV Member Benjamin List- for the development of asymmetric organocatalysis
NCCR MUST at Scientifica 2021- Lightning, organic solar cells, and virtual molecules

Majed Chergui and co-workers: Solving electron transfer in water

July 2, 2013

EPFL scientists have shown how a solvent can interfere with electron transfer by using unprecedented time resolution in ultrafast fluorescence spectroscopy.

Electron transfer is a process by which an atom donates an electron to another atom. It is the foundation of all chemical reactions, and is of intense research because of the implications it has for chemistry and biology. When two molecules interact, electron transfer takes place in a few quadrillionths (10-15­) of a second, or femtoseconds (fsec), meaning that studying this event requires very time-sensitive techniques like ultrafast spectroscopy. However, the transfer itself is often influenced by the solution in which the molecules are studied (e.g. water), and this must be taken into account when such experiments are designed. In a recent Nature Communications paper, EPFL scientists have visualized for the first time how electron transfer takes place in one of the most common solvents, water.

For over twenty years, scientists have been trying to understand how an electron departs from an atom or molecule, travels through space in a solvent, and finally connects an acceptor atom or molecule. Until now, experimental efforts have not borne much fruit, mostly because of the extremely short time periods involved in electron transfer. The problem is further complicated when we consider that the molecules of the commonest reaction solvent, water, are polar, which means that will respond to the movement of electrons and in return, influence it. Understanding the real-time impact of the solvent is crucial, because it directly affects the outcome and efficiency of electron transfer chemical reactions.

Majed Chergui’s group at EPFL’s Laboratory of Ultrafast Spectroscopy (LSU) employed a world-unique setup in their lab to observe the evolution of electron movement with unprecedented time-resolution. The scientists excited iodide in water with ultraviolet light, causing the ejection of an electron from the iodine atom. Using a technique called ultrafast fluorescence spectroscopy they observed the departure of the electron over different times between 60 fsec and 450 fsec. Previous research has always been limited between 200 fsec – 300 fsec because once the electron exits other processes take place that shade the longer periods of time, while shorter timepoints have been inaccessible.

The experiment showed that the departure of the electron depends very much on the configuration of the solvent cage around the iodide. In Chemistry, ‘solvent cage’ refers to the way a solvent’s molecules configure around a solute (atom or molecule) and ‘try to hold it in place’. What the EPFL researchers found was that the polarized water molecules try to keep the excited electron in place, and that causes some structural re-arrangement of the solvent as it tries to minimize the initial energy. In this process, the driving force for electron ejection into the solvent is being reduced. Nevertheless, this process does not prevent electrons from departing, but it slows down their departure stretching their residence time around iodine up to 450 fsec.

The breakthrough study shows how strongly the configuration and re-arrangement of the solvent affects electron departure. “It’s not enough to consider only the donor and acceptor of the electron, now you have to consider the solvent in between”, says Majed Chergui. “If you are thinking about driving molecules by light into electron transfer processes, this is in a way telling the community ‘watch out, don’t neglect the solvent – it is a key partner in the game, and the re-arrangement of the solvent is going to determine how efficient your reaction will be.’”


Journal Reference:
  1. Fabrizio Messina, Olivier Bräm, Andrea Cannizzo, Majed Chergui. Real-time observation of the charge transfer to solvent dynamics. Nature Communications, 2013; 4 DOI: 10.1038/ncomms3119

Website links:
  1. July 8, 2013 in Chemistry World: Solvent traffic responsible for electron gridlock
  2. July 2, 2013 in ScienceDaily: Solving electron transfer

<<
NCCR MUST Office : ETHZ IQE/ULP-HPT H3 | Auguste-Piccard-Hof 1 | 8093 Zurich | E-Mail
The National Centres of Competence in Research (NCCR) are a research instrument of the Swiss National Science Foundation