News

Ursula Keller wins “Swiss Nobel” Marcel Benoist Prize- for pioneering work in ultrafast lasers
MUST2022 Conference- a great success!
New scientific highlights- by MUST PIs Wörner, Chergui, and Richardson
FELs of Europe prize for Jeremy Rouxel- “Development or innovative use of advanced instrumentation in the field of FELs”
Ruth Signorell wins Doron prizefor pioneering contributions to the field of fundamental aerosol science
New FAST-Fellow Uwe Thumm at ETH- lectures on Topics in Femto- and Attosecond Science
International Day of Women and Girls in Science- SSPh asked female scientists about their experiences
New scientific highlight- by MUST PIs Milne, Standfuss and Schertler
EU XFEL Young Scientist Award for Camila Bacellar,beamline scientist and group leader of the Alvra endstation at SwissFEL
Prizes for Giulia Mancini and Rebeca Gomez CastilloICO/IUPAP Young Scientist Prize in Optics & Ernst Haber 2021
Nobel Prize in Chemistry awarded to RESOLV Member Benjamin List- for the development of asymmetric organocatalysis
NCCR MUST at Scientifica 2021- Lightning, organic solar cells, and virtual molecules

Jean-Pierre Wolf, Eric Mazur and co-workers: New system changes the shape of things to come in biomolecular delivery

June 16, 2015

Plasmonic Tipless Pyramid arrays for Cell Poration.


Gold nanoparticles promise potential improvements in cancer treatment, drug delivery, and gene therapy—with one, major problem. In order for the particles to destroy a tumor or create holes in cell membranes to deliver DNA, they need to be irradiated with a high-powered laser. This process excites the nanoparticle's electrons and generates localized surface plasmons, which increases the electric field close to the surface of the particle. These super-excited nanoparticles can do all kinds of things, such as increase the temperature of water and destroy cells.

But the irradiation process can also damage the nanoparticle, splintering off tiny, but potentially toxic, pieces of gold. Even the smallest spec of free-floating gold can wreak havoc in cells and cause genetic mutations. To overcome this problem, Harvard researchers are developing the next generation of gold microstructures, replacing the free-floating particle with pyramid-shaped gold structures anchored to a flat surface. These microstructures are more stable than traditional nanoparticles and focus laser energy into intense electromagnetic near fields.

This new platform was developed in the labs of Eric Mazur at Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS), and Jean-Pierre Wolf at the University of Geneva, Biophotonics group. It is described in a paper published in the journal Nano Letters.

Courvoisier, S., Saklayen, N., Huber, M., Chen, J., Diebold, E.D., Bonacina, L., Wolf, J.P., and Mazur, E. (2015) Plasmonic Tipless Pyramid s for Cell Poration. Nano Lett 15,  4461-4466 (10.1021/acs.nanolett.5b01697) Courvoisier-20151 (4.51 MB) .


See also: PhysOrg

back <<
NCCR MUST Office : ETHZ IQE/ULP-HPT H3 | Auguste-Piccard-Hof 1 | 8093 Zurich | E-Mail
The National Centres of Competence in Research (NCCR) are a research instrument of the Swiss National Science Foundation