News

Ursula Keller wins “Swiss Nobel” Marcel Benoist Prize- for pioneering work in ultrafast lasers
MUST2022 Conference- a great success!
New scientific highlights- by MUST PIs Wörner, Chergui, and Richardson
FELs of Europe prize for Jeremy Rouxel- “Development or innovative use of advanced instrumentation in the field of FELs”
Ruth Signorell wins Doron prizefor pioneering contributions to the field of fundamental aerosol science
New FAST-Fellow Uwe Thumm at ETH- lectures on Topics in Femto- and Attosecond Science
International Day of Women and Girls in Science- SSPh asked female scientists about their experiences
New scientific highlight- by MUST PIs Milne, Standfuss and Schertler
EU XFEL Young Scientist Award for Camila Bacellar,beamline scientist and group leader of the Alvra endstation at SwissFEL
Prizes for Giulia Mancini and Rebeca Gomez CastilloICO/IUPAP Young Scientist Prize in Optics & Ernst Haber 2021
Nobel Prize in Chemistry awarded to RESOLV Member Benjamin List- for the development of asymmetric organocatalysis
NCCR MUST at Scientifica 2021- Lightning, organic solar cells, and virtual molecules

Deep-UV probing method detects electron transfer in photovoltaics

August 14, 2017

EPFL scientists have developed a new method to efficiently measure electron transfer in dye-sensitized transition-metal oxide photovoltaics.

Sensitized solar cells consisting of a molecular or solid-state sensitizer that serves to collect light and inject an electron into a substrate that favors their migration are among the most studied photovoltaic systems at present. Despite its importance in determining the potential of a photovoltaic device, current methods for monitoring the interfacial electron transfer remain ambiguous. Now, using deep-ultraviolet continuum pulses, EPFL scientists have developed a substrate-specific method to detect electron transfer. The work is published in the Journal of the American Chemical Society.

The work was carried out by the lab of Majed Chergui at EPFL, which specializes in ultrafast spectroscopy. The group focused on two types of dye-sensitized solar conversion systems: one based on titanium dioxide, the other on zinc-oxide nanoparticles, both of which belong to the category of transition-metal oxide (TMO) substrates. These TMOs are characterized by specific absorption bands, which are fingerprints of the system and are due to neutral electron-hole pairs, called an exciton.

The EPFL team aimed to overcome the limitations of current methods of measuring electron transfer, which all use light in the visible-to-terahertz frequencies (wavelengths around 400 – 30000 nm). However, this approach is sensitive to carriers that remain free in the TMO substrate. They are therefore unspecific to the type of substrate and cannot be extended to the new generation of solid-state-sensitized solar cells (such as those using perovskites as sensitizers).

Instead, the researchers at EPFL used deep-ultraviolet (260-380 nm wavelength) continuum pulses to probe the TMO substrates in the region of their excitonic transitions and detect electron transfer, via their response. This opens a route to the study of solid-state sensitized cells, as there is hope that the response of the substrate will be distinguished from that of the sensitizer.


Figure: Ultrafast interfacial electron transfer in sensitized solar cells has mostly been probed by visible-to-terahertz radiation, which is sensitive to the free carriers in the conduction band of the semiconductor substrate. Here, we demonstrate the use of deep-ultraviolet continuum pulses to probe the interfacial electron transfer, by detecting a specific excitonic transition in both N719-sensitized anatase TiO2 and wurtzite ZnO nanoparticles.

ScienceDaily

Reference: Baldini, E., T. Palmieri, T. Rossi, M. Oppermann, E. Pomarico, G. Auböck and M. Chergui (2017). Interfacial Electron Injection Probed by a Substrate-Specific Excitonic Signature. J. Am. Chem. Soc. (10.1021/jacs.7b06322) Baldini-2017.

<<
NCCR MUST Office : ETHZ IQE/ULP-HPT H3 | Auguste-Piccard-Hof 1 | 8093 Zurich | E-Mail
The National Centres of Competence in Research (NCCR) are a research instrument of the Swiss National Science Foundation