News

Ursula Keller wins “Swiss Nobel” Marcel Benoist Prize- for pioneering work in ultrafast lasers
MUST2022 Conference- a great success!
New scientific highlights- by MUST PIs Wörner, Chergui, and Richardson
FELs of Europe prize for Jeremy Rouxel- “Development or innovative use of advanced instrumentation in the field of FELs”
Ruth Signorell wins Doron prizefor pioneering contributions to the field of fundamental aerosol science
New FAST-Fellow Uwe Thumm at ETH- lectures on Topics in Femto- and Attosecond Science
International Day of Women and Girls in Science- SSPh asked female scientists about their experiences
New scientific highlight- by MUST PIs Milne, Standfuss and Schertler
EU XFEL Young Scientist Award for Camila Bacellar,beamline scientist and group leader of the Alvra endstation at SwissFEL
Prizes for Giulia Mancini and Rebeca Gomez CastilloICO/IUPAP Young Scientist Prize in Optics & Ernst Haber 2021
Nobel Prize in Chemistry awarded to RESOLV Member Benjamin List- for the development of asymmetric organocatalysis
NCCR MUST at Scientifica 2021- Lightning, organic solar cells, and virtual molecules

LAWC

Duration: 24 months, Start: January 2016

Academic project leader: Jean-Pierre Wolf, Institution: GAP Biophotonics, University of Geneva. Industrial project partner: Tibio Sagl.

The supply of high quality drinking water is a major safety and health concern. Pollution of drinking water is associated with two major families of contaminants: microbial and chemical. Polyharomatic hydrocarbons (PAHs), whose origin is both natural (forest fires) and anthropogenic (fossil fuels combustion, waste incineration, etc.), are a particularly insidious group of chemical organic contaminants. Beside the atmospheric route, they might be introduced in potable water infrastructure via water treatment plants and rainwater collecting basins.  The identification of PAHs in water is normally based on liquid and gas chromatography combined with mass spectrometry or optical detection (absorption and fluorescence) in the ultraviolet. As for biological pathogens, public water analysis is performed following standardized ISO methods largely based on surface plating and membrane filter techniques. All these approaches are associated with relative long incubation times necessary for performing the final assessments: a major limiting factor for both sampling volume and sampling frequency. On the other hand, fluorescence-based optical techniques are faster but they sorely lack in specificity as the spectral properties of PAHs and water bio-contaminats are very similar.

With this project, we aim at setting-up a real-time, portable, and totally consumable-free optical system operating on a liquid jet that can be easily derived from the water distribution infrastructure. The selective identification of bacterial against organic pollutants relies on an innovative pump-probe laser scheme developed and patented by Jean-Pierre Wolf’s group at the University of Geneva.  The basic principle is a straightforward application of NCCR MUST core expertise, as it uses short (nanosecond) laser pulses to interact with multiple electronic states of the molecules contained in the pollutants. The optical response is then used to precisely define at which family the molecules interrogated belong, overcoming most of the limitations of standard optical approaches based on a single laser interaction. The project is run in collaboration with TIBIO, a Swiss SME active in the field of environmental monitoring and water decontamination.



Back >>
NCCR MUST Office : ETHZ IQE/ULP-HPT H3 | Auguste-Piccard-Hof 1 | 8093 Zurich | E-Mail
The National Centres of Competence in Research (NCCR) are a research instrument of the Swiss National Science Foundation